Created by M Ajmir GOOLAM HOSSEN | Last updated 11/2019
Duration: 3 hours | Video: h264, 1280x720 | Audio: AAC, 44 KHz, 2 Ch | 1.2 GB
Genre: eLearning | Language: English + Sub | 37 lectures
What you'll learn
Use Tensorflow and Keras with Python
Create Neural Network models, train them and check their accuracy
Choose the best Neural Network architecture for a given problem
Requirements
Basic programming concepts
High school Maths
Basic level software installation skills
Description
This course was designed to bring anyone up to speed on Machine Learning & Deep Learning in the shortest time.
This particular field in computer engineering has gained an exponential growth in interest worldwide following major progress in this field.
\n
The course starts with building on foundation concepts relating to Neural Networks. Then the course goes over Tensorflow libraries and Python language to get the students ready to build practical projects.
The course will go through four types of neural networks:
1. The simple feedforward
2. Convolutional
3. Recurrent
4. Generative Adversarial
You will build a practical Tensorflow project for each of the above Neural Networks. You will be shown exactly how to write the codes for the models, train and evaluate them.
Here is a list of projects the students will implement:
1. Build a Simple Feedforward Network for MNIST dataset, a dataset of handwritten digits
2. Build a Convolutional Network to classify Fashion items, from the Fashion MNIST dataset
3. Build a Recurrent Network to generate a text similar to Shakespeare text
4. Build a Generative Adversarial Network to generate images similar to MNIST dataset
\n
Who this course is for:
Those seeking entry level roles in AI/Machine Learning
Web Developers who want to implement Machine Learning for their clients
Students in Computer science
Researchers who are looking for kickstart in Deep Learnig
Software project managers who plan to use ML in clients' projects
发布日期: 2019-11-30