Introduction to TensorFlow-Slim
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 1 Hours 37M | 514 MB
Genre: eLearning | Language: English
TensorFlow-Slim (TF-Slim) is a TensorFlow wrapper library that allows you to build and train complex TensorFlow models in an easy, intuitive way by eliminating the boilerplate code that plagues many deep learning algorithms. This course teaches you how to use TF-Slim and is intended for learners with some previous experience working with TensorFlow.
To get the most out of this training, learners should be familiar with the core concepts of data science theory (train/test splits, overfitting and underfitting, bias-variance tradeoffs, etc.), and deep learning theory (backpropogation, weight parameter tensors, neural network layers, objective and loss functions, and optimization via stochastic descent).
Learn to build readable and maintainable deep learning models using the TF-Slim API
Master TF-Slim's wrapper functions for variable creation and manipulation
Be able to rapidly experiment with loss functions, optimizers, and regularizers
Learn to implement routings for model training, evaluation, and hyper-parameter tuning
Understand how to fine-tune a pre-trained model
Learn how to take a model trained on a specific task and use it for another task
Discover how to build and train a feedforward neural network
Gain experience building and training image classification and text classification models
发布日期: 2017-05-03