Building Unsupervised Learning Models with TensorFlowMP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 3 Hours | 344 MBGenre: eLearning | Language: EnglishUnsupervised learning techniques work with huge data sets to find patterns within the data.
This course teaches you the details of clustering and autoencoding, two versatile unsupervised learning techniques, and how to implement them in TensorFlow.
Unsupervised learning techniques are powerful, but under utilized and often not well understood.
In this course, Building Unsupervised Learning Models with TensorFlow, you'll learn the various characteristics and features of clustering models such as K-means clustering and hierarchical clustering.
First, you'll dive into building a k-means clustering model in TensorFlow.
Next, you'll discover autoencoders in detail, which are a type of artificial neural network used for unsupervised learning.
Finally, you'll explore encodings or representation of data for dimensionality reduction of problems.
By the end of this course, you'll have a better understanding of how you can work with unlabeled data using unsupervised learning techniques.
发布日期: 2017-10-26